1. In an inner product space M, suppose that there are $x, y \in M$, such that

$$
|\langle x, y\rangle|=\|x\| \cdot\|y\|
$$

Prove that x and y are linear dependent. In other words, prove that there exists $\lambda_{1}, \lambda_{2} \in \mathbb{C}$, such that $\lambda_{1} x+\lambda_{2} y=0$ and at least one of λ_{1} and λ_{2} is not zero.

Proof. In fact, this is part of the Cauchy-Schwarz inequality (also called the Cauchy-BunyakovskySchwarz inequality). It is about the condition when this inequality becomes an equality.

If $y=0$, it is easy to see that $|\langle x, y\rangle|=\|x\| \cdot\|y\|$. In this case, we do have that $0 \cdot x+1 \cdot y=0$.
Assume that $y \neq 0$, according to the proof of the Cauchy-Schwarz inequality, by setting $\bar{\lambda}=-\frac{\langle y, x\rangle}{\langle y, y\rangle}$, we have

$$
\begin{aligned}
0 & \leq\langle x+\lambda y, x+\lambda y\rangle \\
& =\langle x, x\rangle+\bar{\lambda}\langle x, y\rangle+\lambda\langle y, x\rangle+\lambda \bar{\lambda}\langle y, y\rangle \\
& =\langle x, x\rangle-\frac{\langle y, x\rangle}{\langle y, y} \cdot\langle x, y\rangle \\
& =\frac{\langle x, x\rangle\langle y, y\rangle-|\langle x, y\rangle|^{2}}{\langle y, y\rangle} \\
& =\frac{\|x\|^{2}\|y\|^{2}-|\langle x, y\rangle|^{2}}{\langle y, y\rangle} .
\end{aligned}
$$

It follows that, in the case $y \neq 0$, if $|\langle x, y\rangle|=\|x\| \cdot\|y\|$, then

$$
\langle x+\lambda y, x+\lambda y\rangle=0
$$

thus $x+\lambda y=0$.
Combing both cases of $y=0$ and $y \neq 0$, we finished the proof.
2. Let M be a Hilbert space, and let $\left\{e_{1}, e_{2}, \cdots\right\} \subset M$, satisfying $\left\|e_{i}\right\|=1, \forall i \in \mathbb{N}_{\geq 1}$, and $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$, where δ is the Kronecker delta defined as

$$
\delta_{i, j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j \\
1
\end{array} .\right.
$$

a) [Bessel's Inequality] Prove that for any $x \in M$, we have

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

Hint: Just need to show that for any $n \in \mathbb{N}_{\geq 1}, \sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}$.
b) Assume $\left\{e_{1}, e_{2}, \cdots\right\}^{\perp}=\{0\}$. Prove that for all $x \in M$, we have

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2}=\|x\|^{2}
$$

Hint: Let $x_{n}=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}$. Show that x_{1}, x_{2}, \cdots is a Cauchy sequence. As M is complete (because M is a Hilbert space), $y=\lim _{n \rightarrow \infty} x_{n}$ is in H. Easy to check that $\|y\|^{2}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{2}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. It only remains to show that $x=y$. In other words, $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|=0$.
Proof. a) Just note that

$$
0 \leq\left\langle x-\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}, x-\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}\right\rangle .
$$

Using the orthogonality of those e_{i} and the proof follows from calculations.
b) According to the hint, we just need to show that $x=y$. Note that $\left\{e_{1}, e_{2}, \cdots\right\}^{\perp}=\{0\}$. If we can show that $\left\langle x-y, e_{i}\right\rangle=0$ for all $i \in \mathbb{N}_{\geq 1}$, then we can get $x=y$.

In fact,

$$
\begin{aligned}
\left\langle x-y, e_{i}\right\rangle & =\left\langle x, e_{i}\right\rangle-\left\langle y, e_{i}\right\rangle \\
& =\left\langle x, e_{i}\right\rangle-\left\langle\sum_{j=1}^{\infty}\left\langle x, e_{j}\right\rangle e_{j}, e_{i}\right\rangle \\
& =\left\langle x, e_{i}\right\rangle-\sum_{j=1}^{\infty}\left\langle x, e_{j}\right\rangle\left\langle e_{j}, e_{i}\right\rangle \\
& =\left\langle x, e_{i}\right\rangle-\left\langle x, e_{i}\right\rangle \\
& =0
\end{aligned}
$$

Done!

