1. In an inner product space M, suppose that there are $x, y \in M$, such that

$$|\langle x, y \rangle| = ||x|| \cdot ||y||$$

Prove that x and y are linear dependent. In other words, prove that there exists $\lambda_1, \lambda_2 \in \mathbb{C}$, such that $\lambda_1 x + \lambda_2 y = 0$ and at least one of λ_1 and λ_2 is not zero.

Proof. In fact, this is part of the Cauchy-Schwarz inequality (also called the Cauchy-Bunyakovsky-Schwarz inequality). It is about the condition when this inequality becomes an equality.

If y = 0, it is easy to see that $|\langle x, y \rangle| = ||x|| \cdot ||y||$. In this case, we do have that $0 \cdot x + 1 \cdot y = 0$. Assume that $y \neq 0$, according to the proof of the Cauchy-Schwarz inequality, by setting $\bar{\lambda} = -\frac{\langle y, x \rangle}{\langle y, y \rangle}$, we have

$$-\frac{1}{\langle y,y\rangle},$$

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle$$

= $\langle x, x \rangle + \bar{\lambda} \langle x, y \rangle + \lambda \langle y, x \rangle + \lambda \bar{\lambda} \langle y, y \rangle$
= $\langle x, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \cdot \langle x, y \rangle$
= $\frac{\langle x, x \rangle \langle y, y \rangle - |\langle x, y \rangle|^2}{\langle y, y \rangle}$
= $\frac{\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2}{\langle y, y \rangle}$.

It follows that, in the case $y \neq 0$, if $|\langle x, y \rangle| = ||x|| \cdot ||y||$, then

$$\langle x + \lambda y, x + \lambda y \rangle = 0,$$

thus $x + \lambda y = 0$.

Combing both cases of y = 0 and $y \neq 0$, we finished the proof.

2. Let M be a Hilbert space, and let $\{e_1, e_2, \cdots\} \subset M$, satisfying $||e_i|| = 1, \forall i \in \mathbb{N}_{\geq 1}$, and $\langle e_i, e_j \rangle = \delta_{ij}$, where δ is the Kronecker delta defined as

$$\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \\ 1 \end{cases}$$

a) [Bessel's Inequality] Prove that for any $x \in M$, we have

$$\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 \le ||x||^2.$$

Hint: Just need to show that for any $n \in \mathbb{N}_{\geq 1}$, $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leq ||x||^2$.

b) Assume $\{e_1, e_2, \dots\}^{\perp} = \{0\}$. Prove that for all $x \in M$, we have

$$\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 = ||x||^2.$$

Hint: Let $x_n = \sum_{i=1}^n \langle x, e_i \rangle e_i$. Show that x_1, x_2, \cdots is a Cauchy sequence. As M is complete (because M is a Hilbert space), $y = \lim_{n \to \infty} x_n$ is in H. Easy to check that $\|y\|^2 = \lim_{n \to \infty} \|x_n\|^2 = \lim_{n \to \infty} \sum_{i=1}^n |\langle x, e_i \rangle|^2$. It only remains to show that x = y. In other words, $\lim_{n \to \infty} \|x - x_n\| = 0$.

Proof. a) Just note that

$$0 \le \left\langle x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i, x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \right\rangle.$$

Using the orthogonality of those e_i and the proof follows from calculations.

b) According to the hint, we just need to show that x = y. Note that $\{e_1, e_2, \dots\}^{\perp} = \{0\}$. If we can show that $\langle x - y, e_i \rangle = 0$ for all $i \in \mathbb{N}_{\geq 1}$, then we can get x = y. In fact,

$$\begin{aligned} \langle x - y, e_i \rangle &= \langle x, e_i \rangle - \langle y, e_i \rangle \\ &= \langle x, e_i \rangle - \left\langle \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j, e_i \right\rangle \\ &= \langle x, e_i \rangle - \sum_{j=1}^{\infty} \langle x, e_j \rangle \langle e_j, e_i \rangle \\ &= \langle x, e_i \rangle - \langle x, e_i \rangle \\ &= 0. \end{aligned}$$

Done!

 _	_	-	-	4